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Knowing how resilience changes in the aftermath of a shock is crucial to targeting effective humanitarian
responses. Yet, heavy reliance on face-to-face household surveys often means that post-disaster evaluations
of resilience are costly, time-consuming and difficult to coordinate. As a result, most quantitative
assessments are either carried out via one-off snapshots or by combining surveys conducted years apart.
Doing so severely restricts our understanding of the temporal dynamics of resilience, particulatly as it relates
to inter- and intra-annual fluctuations.

In this paper we examine how household’s resilience to multi-hazard risk changes over time. To do so we
combine two novel approaches. Firstly, we use a high-frequency mobile-phone panel survey to conduct
remote interviews in Eastern Myanmar. Surveys took place every six weeks over a one-year period. Secondly,
we adapt a self-evaluated subjective measure of resilience to allow it to be administered via mobile phone.
Shortly after the first survey was conducted, monsoonal flooding affected the site, allowing for the effects
of flood exposure on resilience to be compared over time.

Our findings reveal how self-evaluated levels of resilience fluctuate considerably over the course of a year.
To probe the effects of the monsoon floods, we compare resilience scores between households directly and
indirectly affected by flooding. Scores drop sharply for the first three months amongst directly affected
households, before slowly converging up to a year later. We also compare the effects of flood exposure on
different socio-economic groups, revealing how female-headed households are particularly affected in the
aftermath of flooding. Insights from the study highlight the dangers of using one-off resilience surveys to
measure resilience, and underscore the need for development actors to account for shorter-term changes
in the design of resilience-building interventions. Lastly, our findings showcase the potential of
methodological innovations in addressing many of the resource, time and logistical constraints of traditional
resilience measurement practices.



1. INTRODUCTION

Tracking the resilience of households and communities is essential to ensuring that development and
humanitarian resources are targeted at those most in need (Bahardur et al. 2015; Carter 2004). Unfortunately,
accurately measuring resilience remains a critical challenge (FSIN 2014; Levine 2014). Definitional and
methodological ambiguities not only mean that resilience measurement is hotly contested (Alexander 2013),
it contributes to the myriad of toolkits that have sprout in recent years. As such, many development actors
have their own interpretations of what resilience is and how it should be measured (Schipper and Langston
2015).

Excessive data collection costs and the impracticalities of coordinating large household survey exercises
mean that our understanding of resilience — at least when it comes to capacity-based quantitative evaluations
— is often restricted to snap-shots: one-off surveys carried out at a single point in time (Gregorowski et al.
2017; Platt, Brown & Hughes 2016; Jones 2018). Little is therefore known about how a household’s capacity
to deal with risk evolves over shorter-term timescales — from days, to months to years (IFAD 2015). This
knowledge gap is particularly evident in the aftermath of shocks and stresses, environments where
humanitarian and development actors take keen interest.

Here we provide novel insights into the temporal aspects of resilience in hazard-affected contexts. In doing
so, we take advantage of two innovations. The first is a mobile phone panel survey to collect high frequency
data after seasonal flooding in Eastern Myanmar. Mobile surveys have been used in a number of academic
survey initiatives across Africa and Asia in recent years, capitalising on the rapid proliferation of cellular
networks and mobile phone availability globally (Berman et al. 2017; Chesterman et al. 2017; Labrique et al.
2017). Phone surveys can be carried out in a number of formats, including via Short Message Services
(SMS), Interactive Voice Recording (IVR) and computer-assisted telephone interviews (CATI) (Gibson et
al. 2017). In the context of this study we focus on the latter: voice interviews conducted via a team of
enumerators.

The advantages of mobile surveying are manifold: they allow respondents to be contacted remotely at a
time of their convenience; provide timely and low-cost alternatives to traditional face-to-face survey
administration; and permit results to be fed back to evaluators in near-real-time (Dabalen et al. 2016). They
are particularly useful in post-disaster contexts, where access to field sites may be compromised due to
political sensitivities, conflict or hazardous environments (Jones et al. 2018).

The second innovation is the use of subjective modes of evaluation. In recent years, a range of subjective
toolkits for resilience measurement have emerged (Marshall and Marshall 2007; Lockwood et al. 2015;
Nguyen and James, 2013; Béné et al. 2016; Jones and Samman 2016; Jones and D’ Errico 2019). These offer
a viable alternative to traditional objective methods which rely on external characterisations and evaluations
of resilience (Jones, 2018). Rather than assuming that outside actors — typically NGOs or evaluation experts
— are best placed to evaluate the resilience of others, subjective approaches take a contrasting
epistemological stance. They seek to capture people’s understanding of their own resilience and factor
perceived capacities directly into the measurement process (Jones and Tanner 2017). Subjective methods
are therefore concerned with measuring perceptions, judgements and preferences of the individuals being
evaluated. They draw heavily on conceptual and methodological developments made in related fields like
subjective wellbeing (Diener et al. 2000; KKahneman and Kruger 2006; Dolan et al. 2008), risk perception
(Slovic 1987; Sjoberg 2000) and psychological resilience (Bonanno et al. 2007; Fletcher and Sarkar 2013).

An additional advantage of subjective methods for resilience measurement is the rapidity with which they
can be administered (Claire et al. 2017). While objectively-evaluations of resilience can involve surveys made
up of hundreds of separate questions (and up to two hours of survey administration), many subjective
modules offer far quicker alternatives (see Jones 2018). For example, subjective modules used by Marshall
and Marshall (2007), Béné et al. (2016) and Jones and Samman (2016) can be administered with just a
handful of questions and completed in less than five minutes. Indeed, it is the brevity of subjective
evaluations that lends them to being administered via mobile surveys, with time limitations of 12-16 minutes
before high risk of call termination (Dabalen et al. 2016; Gibson et al. 2017).



By combining the advantages of these two innovations, this paper provides novel insights into how
resilience-capacities change in the aftermath of natural hazards. More specifically we are interested in three
important questions. Firstly, we examine whether (and how) self-evaluated levels of resilience fluctuate on
intra-annual timescales by comparing scores across our panel dataset. Secondly, we focus on the impacts of
seasonal flooding, looking at whether directly affected households fare worse than those indirectly affected.
Lastly, we see if there are differences in the length of time that floods impact on resilience scores across
different socio-economic groups. Insights into these questions not only speak to the evidence needs of
humanitarian and development actors, they shed valuable light on the validity of combining subjective
methods with mobile phone surveys.

In tackling these three questions we use data collected in conjunction with the Building Resilience and
Adaptation to Climate Extremes and Disasters (BRACED) programme in the Hpa An township of Eastern
Myanmar. As part of the programme, we carried out face-to-face household surveys with 1,072 residents in
June 2017. Roughly one month after the baseline survey the area was hit by monsoon flooding. In order to
investigate the effects of flooding on survey respondents, call centre enumerators carried out successive
phone surveys every six-to-eight weeks for a period of twelve months. In total, eight separate waves of data
collection were carried out allowing rapid evolutions in resilience and recovery to be quantified for the first
time.

In this paper, we first provide background on resilience, and its application in measurement approaches.
We then detail data collection methods used in the survey, including descriptions of the subjectively-
evaluated resilience module and steps taken in mobile surveying. Results are showcased, before we then
discuss the paper’s main research questions. Lastly, we provide methodological challenges and routes
forward for resilience measurement.

2. CONCEPTUALISING RESILIENCE AND HOW IT EVOLVES OVER TIME

Resilience means many things to many different people; a term heavily contested not only across academic
disciplines, but within them (Brown 2014). Much of this confusion stems from the fact that resilience has
been applied across a range of different fields, from engineering and ecology to its recent adoption within
the social sciences (Olsson et al. 2015). More recently, resilience has come to prominence as a guiding
framework for development and humanitarian actors (Brown, 2015). Indeed, resilience is now seen as an
important international policy issue, with firm targets embedded into various United Nation’s frameworks

(UN 2015a; UN 2015Db).

While the rise of resilience is an encouraging political development, its proliferation makes measurement
particularly challenging. Unlike some health or poverty outcomes, resilience — at least as it relates to
individuals or households — is neither directly observable nor measurable using a single indicator (Paloviita
& Jirveld 2015). It also partially explains the dominance of qualitative analyses in our understanding of the
resilience of socio-ecological systems to date (Adger, 2000; Walker et al. 2004; Folke, 2006; Cote and
Nightingale, 2012). Indeed, some decry attempts at quantification as futile altogether (Levine, 2014).

Yet, this hasn’t stopped a large number of quantitative assessment tools from emerging in recent years. The
supply is in large part driven by calls for better ways of tracking the effectiveness of large international
investments flowing into resilience-building. One way of measuring resilience is to compare how people’s
wellbeing changes in response to a shock — usually measured through consumption, GDP or food security
(Kimetrica, 2015; Arouri et al. 2015; Lazzaroni, et al. 2014). While informative, these approaches often make
use of unrealistically narrow definitions of wellbeing (and resilience), and struggle to account for the
influence of confounding factors (Shipper and Langston 2015; Bahadur and Pichon 2017). Moreover, they
are severely limited in needing a shock to occur for someone’s level of resilience to be revealed.

As a result, most quantitative assessments take a different approach: evaluating resilience-capacities instead
of outcomes. Resilience is commonly thought of as constituting a suite of related capacities (Kelman et al.
2016). For example, the elaborate definition of resilience used by the Intergovernmental Panel on Climate
Change’s Fifth Assessment Report includes references to: ‘coping’, ‘responding’, ‘reorganising’, ‘maintaining
structure’, ‘adaptation’, ‘learning’ and ‘transformation’ (IPCC 2014: 23). Capacity-based approaches



concentrate on measuring these constituent capacities, often through use of objectively-evaluated proxy
indicators (FAO et al. 2016; Smith et al. 2015; Sylvestre et al. 2012). Given that many of the capacities are
themselves difficult to observe, indicators are often bunched together requiring considerable amounts of
socio-economic data gathered from household surveys (Shipper and Langston 2015; FSIN 2014).

One key advantage of capacity-based frameworks is that they encourage the recognition of resilience as a
process (or set of processes) that continually evolve over time:

“ISocial resilience] recognises uncertainty, change and crisis as normal, rather than exception. The world is conceived
of as being in permanent flux. In consequence, social resilience is perceived as a dynamic process, rather than as a
certain state or characteristic of a social entity.” (Keck and Sakdapolrak 2013, pp 9)

Conceptualising it in this way recognises not only that resilience constitutes the capacity to respond to
changing shocks and stresses, but that a household’s resilience will itself persistently changing over time
(Waller, 2001; Meadows et al. 20106). In other wotds, at any one moment in time, a household may exhibit
comparatively low levels of resilience in responding to multi-hazard risk (say the plight of farming household
following the death of an income generator), while there may be other times when the household’s
resilience-capacity is far higher (perhaps following harvest of a bumper crop).

Despite this, most resilience assessments are limited to single cross-sectional surveys (acting as a snap-shot
in time). While well-resourced development programmes occasionally include mid-term and/or end-line
surveys into their monitoring and evaluation (Yaron et al. 2017), panel surveys are sadly rare. One-off
evaluations will therefore only measure resilience as it relates to the precise moment of data collection —
failing to recognise that levels of resilience may have quickly shifted thereafter (Meadows et al. 2016).

The high financial and logistical costs of household surveys are largely to blame here, meaning that
quantitative evidence of the temporal dimensions of resilience is limited — particularly on intra-annual
timescales. Yet, there is good reason to believe that resilience may fluctuate on timescales shorter than a
year. For example, the sustainable livelihoods literature has a long history documenting the influence of
seasonality and intra-seasonal dynamics on livelihood outcomes and poverty — both of which contribute
significantly to a household’s resilience (Chambers et al. 1981; Longhurst et al. 1986; Deveroux et al. 2013).
In recent years, some of this thinking has permeated the resilience literature. Though much of this relates
to the adoption of adaptation and transformation as core components of the resilience of socio-ecological
systems — concepts that are more commonly associated with multi-annual and decadal fluctuations (Kates
et al. 2012). In what follows, we seek to fill a gap in quantitative evidence on the short-term dynamics of
resilience by using high-frequency surveys administered before and after flooding in Myanmar.

3. STUDY APPROACH

In order to track changes in resilience-capacities over time we use survey data collected from Hpa An
township in Eastern Myanmar. Access to the site was facilitated through the BRACED Myanmar Alliance,
a consortium of NGOs led by Plan International and consisting of five partner agencies: ActionAid, World
Vision, BBC Media Action, the Myanmar Environment Institute and the UN Human Settlements
Programme (UN-Habitat). The project was in operation between March 2015 to January 2018, delivering a
range of resilience-related activities in eight townships across the country (see http://www.braced.org for
turther details).

The choice of Hpa An was taken on the basis of a number of factors (see Jones et al. 2018). Principally, the
site is prone to flooding during the monsoon season owing to its proximity to the Thanlwin river. Indeed,
a month after the first set of baseline surveys, Hpa An was subjected to a series of heavy flood events that
damaged communal infrastructure and livelihoods in the area. Unlike a number of other BRACED sites,
Hpa-An is not affected by political instability. Lastly, the site in Hpa-An is made up of eight individual
villages, each with different livelihoods, socioeconomic characteristics and risk profiles allowing for
comparisons of resilience-capacities to be made.



3.1. Survey design and set-up

The first step in our survey design involved collecting baseline information through a traditional face-to-
face household survey in June 2017. The exercise was carried out for all households across the eight villages
served by the BRACED programme in Hpa An— essentially constituting a census of the area. After
completing the surveys, each household was handed a mobile phone (a Singtech G9Y) and a small solar array.
Handouts were done irrespective of whether respondents were previously in possession of a phone or not.
Phone numbers of any other household members, as well as immediate neighbours, were collected to help
ensure that respondents were easily contacted for the mobile surveys that followed.

Figure 1: List and location of the eight villages in the mobile panel survey
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Notes: Dark blue line represents the Thanhwin river (thick line) and its tributaries (thin lines). Grey shaded areas relate to
village locations within Hpa An.

Immediately after the baseline survey a call centre was set up in the city of Yangon. Call centre enumerators
comprised of individuals that took part in the initial survey and were trained in the use of computer-aided
systems — involving automated dialling and the completion of online forms. Once set up, the call centre
was used to remotely contact each of the households via the mobile phones distributed (or the alternative
numbers collected).

A short oral survey was administered covering a range of resilience-related topics. The survey also gathered
relevant socio-economic data. Given the risk of drop-out and survey fatigue (Debalen et al. 2015), mobile
surveys were limited to 10-12 minutes in duration. In instances where respondents were unable to speak,
an alternative time was arranged. Respondents were also given a small financial incentive to take part in the
survey in the form of $0.50 airtime credit delivered remotely to the phone after completion. Previous
research has shown that small incentives like these can help to ensure high response rates without biasing
results (see Leo etal., 2015). Each individual wave took roughly six weeks in length, with seven phone waves
completed across the study period. In total eighth survey rounds were completed: the initial face-to-face
baseline followed by seven waves of mobile phone surveys.

Answers from the baseline were used to create a detailed profile of the socio-economic characteristics of
each household. In some cases, households were unable to provide answers to all socio-economic questions.



In addition, data on flood exposure started as of the first phone survey. Owing to the fact that a small
number of households (5 in total) were solely affected by flooding in between Waves 1 and 2, and are likely
to act as confounders, we remove these from the sample entirely.

Given that flood exposure is unlikely to be random, we weight our main analyses using an Inverse
Propensity to Treat Weighting. Details of the IPTW process are described below, though require all
households to be matched to a selection of socio-economic characteristics gathered during the baseline
survey. We therefore exclude the small number of houscholds that fail to answer all socio-economic
questions in the initial survey. This limits the main sample to a partially balanced panel of 1072 households!.
In addition, owing to the fact that drop-out rates in subsequent Waves of the survey appear non-random
(and higher) amongst directly affected households, we also run the main analyses with a fully-balanced panel
dataset comprised of 925 households. Result from the two datasets are compared later in Section 4.2,
revealing similar trends against the main outcomes of interest.

Alongside the quantitative surveys, a series of semi-structured interviews were conducted using the mobile
phone set-up. A total of 25 respondents were randomly selected from the survey population and asked a
series of questions relating to resilience and coping strategies taken in response to flooding. Interviews
lasted roughly 40 minutes in duration and were conducted using the same team of survey enumerators.
Interviews were fully transcribed, providing insights to supplement findings from the quantitative survey.
Given restrictions in the length of the interviews, respondents were asked only a handful of questions
relating to factors associated with resilience. We augment as many of the quantitative results with qualitative
insights, though recongise that this is far from uniform.

3.2. Measuring resilience using people’s perceptions

Resilience can be measured in relation to a range of scales and systems. Here we clarify what we mean by
resilience in the context of this study, whose resilience we refer to and resilience to what.

Our primarily interest is in examining social resilience — i.e. the ability of a social system to respond to
external threats and changes while maintaining similar states of wellbeing or livelihood opportunity
(Marshall and Marshall 2007; Adger et al. 2002). Core to this definition is the notion that social systems may
need to re-organise in responding to evolving risk profiles: adapting and potentially transforming core
functions as well institutional set-ups or power relations in order to sustain societal outcomes (Béné et al.
2014; Carr 2019). Viewed in this way, resilience can be seen as a process rather than a static outcome, and
is typically characterised as made up of a range of inter-related capacities (FSIN 2014).

In narrowing down our focus on social resilience, we are especially interested in a particular unit of analysis:
the household (Alinovi et al. 2008). By doing so we recognise the importance of the household system as a
crucial decision-making body in responding to external threats:

As the decision-marking unit, the household is where the most important decisions are made regarding how to manage
uncertain events, both ex ante and ex post, including those affecting food security such as what income-generating
activities to engage in, how to allocate food and non-food consumption among household members, and what strategies
to implement to manage and cope with risks’. (Alinovi et al, 2008:5).

Household resilience can be seen as sub-system of wider social resilience, and thus similarly concerned with
the ability of individual household units to maintain levels of wellbeing and livelihood outcomes in the face
of external threats. Indeed, household-systems have been the primary unit of focus for a number of
resilience measurement studies (see D’Errico & Di Giuseppe 2018; d’Errico et al. 2018; Alinovi et al. 2010),
allowing us to compare resilience outcomes from this study with a range of objectively-oriented evaluations.

While our focus on household units addresses the question of whose resilience, we must also clarify to what?
One option is to treat resilience as hazard-specific. For example, a focus on flood resilience is concerned

' The original face-to-face baseline was conducted with 1203 households, meaning that the partially-balanced panel constitutes
89% of the original sample



solely with the characteristics and indicators that reflect a household’s ability to deal with flood risk. Yet,
external threats rarely affect households in isolation. The impacts of flooding are likely to interact with, and
be further compounded by, a whole host of wider socio-economic and environmental factors. Many of
which may manifest through hybrid (or additional) threats further down the line — whether in the form of
food price spikes or pest outbreaks.

Accordingly, resilience is increasingly framed in relation to multi-hazard risk. This recognises that the
characteristics and indicators of resilience to different types of threats are often closely matched. In this
study, we adopt this same multi-hazard framework, and seek to measure a household’s capacity to respond
to a broad range of socio-economic and environmental shocks (rather than a single specified threat). This
approach is used in a range of household resilience measurement frameworks, including the Resilience
Index Measurement and Analysis (RIMA) popularised by the United Nations Food and Agriculture
Organisation (FAO) (Alinovi et al. 2008; Alinovi et al. 2010; D’Errico & Di Giuseppe 2018).

To measure household resilience, we use the Subjective self-Evaluated Resilience Survey (SERS) module
(Jones and Samman 2016; Jones et al. 2018; and Jones and D’Errico 2019). SERS capitalises on people’s
knowledge of their own resilience and asks people to self-evaluate themselves accordingly. Perception based
tools like SERS have gained traction in recent years and are seen as a way of complementing traditional
objectively-evaluated approaches to resilience measurement (Clare et al. 2017).

The SERS approach is based on a series of questions aggregated to form a single module (see Annex Table
1). Each question is comprised of a short statement linked to a specific resilience-related capacity.
Statements are phrased in relation to a household’s ability to deal with hypothetical future threats.
Respondents are asked to rate their levels of agreement with the statements using a 5-point Likert scale (see
Annex Table 1). Answers to each question are numerically converted, with scores calculated using an equal
weighted mean for all capacity questions. Scores are then normalised, resulting in a single resilience score
ranging from 0 (lowest resilience) to 1 (highest resilience).

SERS is designed to be flexible. The choice and number of statements can be changed in order to mimic a
range of resilience frameworks. In the context of this study, we define resilience in accordance with the
3As’ model first introduced by Bahadur et al. 2015 — referred to herein as the SERS-3A model, or simply
SERS. Under the 3A model, resilience is viewed as consisting of three core capacities: anticipatory capacity
(the ability to anticipate threats and respond ahead of time); absorptive capacity (the ability to bounce back
after a threat) and adaptive capacity (the ability to change core societal structures and functions in response
to changing risk profiles). This model of resilience has been used widely by a range of development actors
and forms the conceptual basis of the §$130M BRACED programme. While the majority of our analysis
makes use of the 3As, we also compare results to other popular resilience frameworks, including those that
feature transformative capacity (Béné et al. 2014).2

When evaluating SERS, it is important to clarify what the measure actually represents. Specifically, SERS is
meant as a momentary marker of a household’s resilience to deal with future threats (expressed as multi-
hazard risk rather than a singular hazard). Self-evaluations aim to be forward-looking, gauging the extent to
which households can deal with forth-coming hypothetical threats at a given moment in time. While the
SERS model inherently cannot cover all aspects of resilience, and other capacities undoubtedly remain, it
gives a useful indication of the household’s resilience and is comparable with similar objectively-oriented
resilience measures.

2 We return to examine differences amongst SERS variants in the Robustness checks section and Section 6.2



Table 1: List of resilience-related capacity questions used in the 3A variant of the Subjectively-
Evaluated Resilience Score

Preamble: ‘T am going to read out a series of statements. Please tell me the extent to which you
agree or disagree with them.” [Read out each statement and ask] “Would you say that you strongly
agree, agree, disagree, strongly disagree or neither agree nor disagree that:’

Resilience-related capacity Survey question

. . Your household can bounce back from any challenge that life

Absorptive capacity throws at it

Adaptive capacity If threats to your household became more frequent and intense,
ptive capacity you would still find a way to get by

Your household is fully prepared for any future disasters that may

Anticipatory capacity .
patory capacity occur in your atea

Notes: For a full list of the original capacity questions, as well as other SERS variants see Annex Table 1 and Jones and D Errico
(2079).

In the context of this paper we are primarily interested in how hazards impact on resilience scores over
short periods of time. We note that there are many factors that can affect a household’s resilience. Indeed,
changes in resilience are likely to occur whenever there are factors that influence the status of resilience-
related capacities — many of which are likely to take place in the absence of a hazard. However, the
occurrence of a shock (in this case heavy seasonal flooding) can be expected to have an immediate and
consequential impact on household’s resilience capacities (Linnenluecke 2012) - akin to a natural
experiment. This allows us to easily infer how exposure to one hazard influences resilience levels going
forward, isolating the temporal nature of this impact using our unique high-frequency panel. It is for this
reason that we focus on the impacts of the June flooding in Hpa An in this study. Yet, we note that the
same methodology could easily be applied to tracking slower onset changes to resilience capacities in other
contexts.

4. RESULTS

Below we present findings from across the various waves of surveying in Hpa An (for clarity, we refer to
the initial face-to-face survey as the baseline, and the subsequent seven rounds of mobile phone surveys as
waves 1-7). We begin by describing socio-economic and environmental risk conditions of our study site,
followed by insights into the three research questions addressed in this paper.

The left-hand column of Table 2 presents unweighted summary statistics of socioeconomic characteristics
of households (we return to describe the nature of the weighted sample in the right-hand columns later).
The sample is characterised by low socio-economic wellbeing and high levels of disaster risk (further visual
breakdowns are presented in Annex Figure 1). Around 30% of respondents have not completed any form
of formal education. This compares with the national average of 16% for those aged 25 and over (GoM
2017a).

Agriculture is the primary source of livelihood with casual labour and remittances playing an important role.
Close to one in five head-of-households classifies themselves as a widower — with the national average being
10.4% for women and 3.1% for men (GoM 2017b). Moreover, the mean Progress Out of Poverty (POP)
score? for households in the survey is 41 — roughly equivalent to a 16% likelihood of being below the 2010

? The Progress out of Poverty Score was created by the Grameen Foundation, it uses 10 simple questions, such as “What material
is your roof made out of?” or “How many of your children are in school?” to determine the likelihood that a particular



national poverty line (see Schreiner 2012). While this indicates that poverty is present, it is not prevalent,
and is similar to Myanmar’s average of 19.4% of households below the national poverty line in 2015 (World
Bank 2017).

Table 2: Summary statistics for the Hpa An panel survey (unweighted and weighted)

Unweighted sample Weighted sample

Variable O_vcrall No_hazard Fl(iods p O_vcrall No_hazard Fl(_)ods

@=1072) (@=994) (n=78) @=1072) (=994 (a=78)
Baseline resilience scote 054 (0.18) 054 (0.18) 056 (0.13) 017  05(00)  050.0) 0600 065
o hend 033 08
None 312(20.1)  285(287) 27 (34.6) 312.(30.0) 285 (29.1) 27 (30.9)
Some schooling 760 (70.9) 709 (713) 51 (65.4) 760 (70.0) 709 (70.9) 51 (69.1)
Age of respondent 472(13.0) 472(129) 47.0(135 086 | 468(11) 47204) 464(23) 074
ngefizzzotgfft‘:ﬁ;;“(f\e;n) 417(133) 421(135) 374 (9.6) <0001| 40.6(0.5 41704 394(10) 003
Mean number of HH occupants 4.6 2.03)  4.66 2.04) 4.58(1.97) 071 | 48(02) 4701  48(03) 056
E:(inrixq i(:lrrcfzrmer as primary 0.006 0.60
Farmer 506 (47.2) 457 (46.0) 49 (62.8) 506 (45.5) 457 (47.2) 49 (43.8)
Non-farmer 566 (52.8) 537 (34.0) 29 (37.2) 566 (54.5) 537 (52.8) 29 (36.2)
B:(inrrir;xq i?lrrzzmittance as primary 073 0.99
Non-remittance 727 (67.8) 676 (68.0) 51 (65.4) 727 (67.9) 676 (67.8) 51 (67.9)
Remittance 345 (322)  318(32.0) 27 (34.6) 345 (32.1) 318 (322) 27 (32.1)
Gender of HH head 0.25 0.83
Male 830 (774) 765 (77.0) 65 (83.3) 830 (78.1) 765 (77.4) 65 (78.8)
Female 242 (22.6) 229 (23.0) 13 (16.7) 242 (21.9) 229 (22.6) 13 (212)
Respondent gender 0.72 0.87
Male 563 (52.5) 520 (523) 43 (35.1) 563 (52.0) 520 (525) 43 (51.4)
Female 500 @7.5) 474 (47.7) 35 (44.9) 500 48.0) 474 (47.5) 35 (48.6)

Notes: For continuous variables means are presented with standard deviations in parentheses, an unequal variance t-test is used to compare means; for
categorical variables frequencies are presented with percentages in parentheses, a Pearson’s chi-square test is used to examine differences in distributions
across groups. Statistics are provided only for households that complete all eight waves of the panel survey (reducing the sample from 1203 to 985).

During the baseline interview, respondents were also asked a number of questions related to risk perception.
Annex Figure 2 shows that, while the area is occasionally affected by drought and cyclones, floods are by
far the most frequently occurring climate hazard.

To get a better sense of levels of resilience in pre-monsoon conditions, we also look at associations between
subjectively-evaluated resilience and various socio-economic traits by running a series of multivariate
regressions (see Annex Section 1). Using this single cross-section of the survey, we observe that baseline
resilience scores are associated with a number of socio-economic traits. Higher education of the household
head, higher POP poverty scores (i.e. lower likelithood of being in poverty), female headed-households,
greater life satisfaction, higher numbers of household occupants and reliance on remittance as a primary
source of income are all positively associated with subjectively-evaluated resilience. Conversely, high
dependence on farming as well as distance from the Thanlwin river are negatively associated with resilience.
Reassuringly, many of these socio-economic characteristics appear to align with quantitative and qualitative
understandings of the drivers of household resilience within the resilience literature (D’Errico and Di
Giuseppe 2018). The age and gender of respondents also exhibit statistically significant relationships with
SERS scores.

household is living below a given poverty line. The likelihood is derived from the value of the score, which ranges between 0
(extremely poor) to 100 (not poor). Thus, the lower the score the higher the likelihood for a household to be poor. For more
see Schreiner (2012).



4.1. Changes in resilience over time

While the baseline results are of some interest, the real value from the Hpa An dataset is found in the full
panel dataset. As outlined above, a few weeks after the baseline survey was conducted a series of flood
events struck the area between June-July 2017. Direct observations of flood exposure for the area are
lacking. However, we present simulated discharge of the Thanlwin for Hpa An town (adjacent to the 8
surveyed villages) using ensemble forecasts from the Global Flood Awareness System (GloFAS) for the
period of the survey in Figure 12a (Alfieri et al. 2013). We also overlay dates of the various survey waves
shown as vertical lines. As respondents were contacted on different days during each wave of the mobile
survey, lines represent the average length of time from the baseline (the solid vertical line) for all households
in subsequent waves (dashed lines).

A sharp uptick in river discharge occurs just after the baseline survey, with levels decreasing gradually
thereafter. Large seasonal fluctuations like this are not uncommon in Hpa An. Indeed, insights from the
baseline survey show that one in five households report being hit by floods at least once a year (20.8%) —
see Annex Figure 2. Another 42.1% are affected by floods every couple of years. Accordingly, while Figure
23c shows that monsoonal river discharge in 2017 was not especially exceptional, various accounts from
the semi-structured interviews point to the extent of localised impacts:

“T'he roof of our house was damaged. As the roof of our house is made with leaves, it was blown away by wind. We had
10 sleep on the floor under our house because the whole house was wet. We fixed the house by buying leaves for the roof of
the house. We didn’t get any help from others. We fixed it with money of our own. The water level rose up to our knee
Srom the ground.” (ID#1, Female, Seamstress)

Note that the above quote also illustrates the importance of framing resilience in relation to multi-hazard
risk. Even though the principle threat came from water inundation, high wind speeds also played a damaging
role in the Hpa An floods. Interviewees report numerous other instances of damage to household property
and negative implications for livelithoods, with similar impacts on communal infrastructure and local
markets.

Figure 12¢) reports the extent of flood exposure amongst surveyed households. At the start of each round
of surveying, households were asked whether they had been impacted by a flood event since the last point
of contact — defined as one inflicting a large negative effect on the household’s way of life*. As Figure 12¢
shows, a number of households reported as directly impacted by flooding between the baseline and Waves
1 (n=87) and 2 (n=19) of the survey, coinciding with peak discharge of the Thanlwin river>.

* See Annex Table 3 for survey question wording
® Note that these numbers are limited to n=78 (W1) and n=5 (W2) in the partially balanced dataset — owing to the exclusion
criteria outlined in 3.3.1



Figure 2: Thanlwin River discharge and frequency of self-reported flooding during the course of
the Hpa An survey

a) Simulated discharge of the Thanlwin river during survey period
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Notes: Vertical dashed lines in Panel a) represent different waves of the mobile phone panel survey. Households classified as
directly affected in Panel ¢) are those that self-report as having experienced a flood event with serious negative impacts the
household’s way of life in the previous month (baseline) or since the last wave of the survey (for mobile phone waves).

Given the extent of flooding and localised impacts, we might expect to see this reflected in changes in levels
of resilience-capacities amongst households in Hpa An. To investigate this further we plot mean SERS
scores across the entire panel for the full Hpa An sample in Figure 13a. We also show the distribution and
density of subjectively-evaluated resilience scores for each of the survey waves in Annex Figure 4.

Owing to the fact that two different methods of survey administration were used (face-to-face during the
baseline and mobile for all remaining panel waves) we mark the period between the baseline and first wave
of the mobile survey with a dotted line. Indeed, insights from related academic fields reveal well documented
differences between these two modes of administration. For example, Dolan and Kavestos (2017) note that
subjective wellbeing scores are significantly higher for phone surveys than for face-to-face interviews (2016).

Coincidently, the gap between the face-to-face and phones surveys is greatest when the majority of flood
events are reported to have taken place in Hpa An. Thus, while it may be surprising to see a large jump in
resilience scores between the baseline and Wave 1 of the survey, a large part of this is likely due to mode
effects®. The fact that scores immediately drop after Wave 1 is also supportive of this interpretation.
However, we choose to retain data from the baseline survey as it contains useful information on pre-flood
conditions. In doing so we operate on the assumption that any differences between the two modes are

¢ A similar jump in scores between face-to-face and mobile phone modes is registered in a parallel BRACED survey run in the
adjacent town of Mudon, providing further confidence in the existence of positive mode effects.



systematic and consistent across socio-economic groups. We note that results should be carefully
interpreted with this caveat in mind.

As is clear, despite the rise in mean resilience scores between the baseline and first wave, there appears to
be a dramatic and consistent reduction between Waves 1 and 4 (roughly 1-7 months after the baseline).
Scores then rebound sharply during Wave 5 before appearing to level off somewhat for the final wave of
the survey just over 10 months since the baseline survey.

Figure 3: Change in subjectively-evaluated resilience scores over time

a) Resilience scores over time across all households b) Resilience scores over time by flooding
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between face-to-face and mobile phone phases of the panel survey. Horizontal coloured lines are baseline resilience scores. The
shaded blue area in Panel d) shows a stylised representation of the area used to calenlate the Area Under the Curve (AUC).
The face-to-face baseline (prior to flooding) is nsed as the reference period with the X-axis showing coefficients to the number
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We can also look at differences in resilience scores based on self-reported flood exposure. Figure 13b
differentiates between households directly and indirectly affected by flooding between the baseline and first
two waves of the phone survey. Here it is important to note that given the survey is a census of eight villages
on the banks of the Thanlwin, we assume that flooding during this period had some degree of impact on
all households. This could relate to access to: the status of communal assets; effects on local markets and
livelihood opportunities; or demands of support from immediate family and neighbours. This assumption
is supported by qualitative insights from the key informant interviews that report a wide range of localised
impacts across all households in the area. As such, we classify all remaining households as ‘indirectly’
affected by the flood events, rather than ‘unaffected’.

Directly affected households have lower resilience scores immediately after the main flood period. This is
despite resilience levels being slightly higher for this group prior to flooding. Scores do appear to converge
towards the fourth wave of mobile surveying and rebound similatly towards the end of the survey (though
with slightly lower scores than indirectly affected households). It is also possible to account for different
starting values prior to flooding by normalising baseline resilience scores. Figure 13c reveals starker



differences between directly and indirectly affected households with similar patterns of convergence (and
divergence) towards the end of the panel.

4.2. Examining the impact of natural hazards on resilience over time

It is clear from Figure 13 that levels of resilience drop sharply for all households after flooding. However,
a host of wider shocks, seasonal factors and psychological traits could also be affecting changes in self-
reported scores. To get a better sense of the specific role that floods played in influencing resilience scores
over time, we employ a series of difference-in-differences regression specifications. Given the issue of
spillover in flood impacts and coping strategies as highlighted earlier, we do not see these exercises as formal
impact evaluations. Neither are they an attempt to formally quantify the magnitude of flood impacts on
resilience. Rather, we use them to address a more basic question of whether differences in exposure to
natural hazards affect self-reported resilience scores over time. We see this as a key test of the validity of
the SERS module.

Our first method uses a generalised difference-in-differences approach with multiple time periods (Angrist
& Pischke, 2008; Bertrand 2004). Here Resiliencey, corresponds to the SERS resilience score for household
h during time period (wave) t.

Resiliencey, = Bipost; + Bofyn + Bs(post, - fr) + W, + O, + ey 1)

post, is an indicator of period, with O given for the pre-flood baseline and 1 for all post-flood waves. f;,
denotes the severity of the flood’s impact on the household (0 for households that are indirectly affected
by the flooding and 1 for those directly affected). y,is an individual fixed effect (corresponding to each
household in the survey), and @, is a time fixed effect (with separate dummies for each individual wave of
the survey).

The post, - f;, interaction estimates the change in pre- and post- resilience scores between those directly and
indirectly affected by flooding, with the main entity of interest given by the coefficient ;. To account for
the fact that flood exposure is likely to have varied across the eight surveyed villages, we cluster-standard
errors at the village level (though we repeat the analysis with errors clustered at the individual level as a
robustness check). Given the small number of village-level clusters (n=8), standard errors are estimated
using a Wild clustered bootstrap (Cameron, Gelbach and Miller 2008)7.

A key assumption in difference-in-differences models is parallel trends between comparison groups (Angrist
& Pischke 2008). While we do not have much data on household outcomes prior to flooding, it is reassuring
to see that houschold characteristics between directly and indirectly affected households (shown in the
unweighted sample in Table 2) appear to be relatively homogenous during the baseline. To further account
for the risk that imbalances in composition may be affecting trends over time, we also combine the
difference-in-differences model in Equation 1 with a weighting procedure (Stuart et al. 2014). Specifically,
we use an Inverse Propensity to Treat Weighting (IPTW).

The first step involves running a logistic regression to determine the probability of being directly affected
by the floods, p. A probability is obtained by regtessing fp, against a range of socio-economic baseline
variables (those listed in Table 2). A weight is then given to each household, using an inverse probability of

treatment (Imbens 2000), with households that are directly affected assigned %, and those indirectly affected

given . These weights are then used in calculating Equation 1.
1-p

7 "We also see no differences in main outcomes of interest when using traditional cluster-robust or bootstrapped standard errors
as an alternative



Table 3: Difference-in-differences between direct and indirectly affected households across all
waves of the survey

Resilience-over-time (DID) Resilience-over-time (DID)
(Unweighted) (Weighted using IPTW)
f - post (Difference in Differences) -0.08*** (0.02) -0.06%+* (0.02)
f (1=Directly affected by flooding) -0.13%%* (0.02) -0.14%+ (0.02)
post (1=Periods after flooding) -0.01 (0.01) 0.004 (0.01)
Household fixed effects YES YES
Wave fixed effects YES YES
Observations 8,765 8,765
Adjusted R-Squared 0.29 0.21
Residual Std. Error 0.707 (df = 8740) 0.981 (df = 8740)

Note: Values indicate Beta coefficients with Standard Errors clustered at the village-level using a wild cluster bootstrap (with 200 replications) and shown
in parentheses, *p<0.1** p<0.05 ***p<0.01

Table 3 reports the estimates for the two models. In both cases, the coefficient for differences in resilience
scores between the two groups (f - post) is negative and significant. While the effects are somewhat reduced
for the weighted sample, results from both specifications suggest that households directly impacted by the
floods have lower resilience scores over time than those that are indirectly affected (8% lower for the
unweighted sample, and 6% lower for the IPTW sample).

So far, we have focused the analysis on comparisons between the pre-flood baseline and all post-flood
periods at once. However, we are also keen to have a more detailed look at how resilience scores vary over
time, gaining insights into length of impact. To do so we modify Equation 1 to run an event study
specification with interactions between the flood impact variable, fp; and time dummies for all waves
during the survey.

7
Resiliencey,, = Z Pl (ty =t*+k) - fi+yYp+0, +ey

k=1

2)

Here f; is an indicator of whether the houschold experienced a flood during the survey petiod.
1 (tp, = t* + k) indicates the number of waves relative to the face-to-face baseline t*, with k ranging from
1-7 (representing the seven Waves of mobile phone survey after flooding). The baseline survey is omitted
as the reference period.
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Figure 4: Differences in self-evaluated resilience scores for households directly and indirectly
affected by flooding over time
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Notes: Graph shows outputs from the event study specification. Dots represent beta coefficients, with whiskers as 95% confidence
intervals. The red shaded area represents the period of time when extensive seasonal flooding affected the Hpa An area. The
dashed horizontal lines represents the average of all coefficients for survey waves after the period of flooding (waves 1-7). Standard
ervors are clustered at the village level nsing a Wild clustered bootstrap (200 replications). Coefficients are in relation to the
number of months since the initial face-to-face baseline survey.

Figure 14a shows a sharp drop in resilience scores for directly affected households in the first months
following the baseline. Scores do appear to rebound somewhat, though convergence is somewhat
inconsistent. The negative value of coefficients for all lead waves suggests that the impacts of flooding on
directly affected households persist for some time. Outcomes from the weighted sample (Figure 14b) also
reveal how directly affected households fare worse compared with those indirectly affected — closely
matching those in the unweighted sample. Noticeably, scores for both approaches rebound somewhat
towards the end of the panel survey — though this is inconsistent in nature, with a slight jump in Wave 4
(large standard errors present in the IPTW sample).



4.3. Calculating recovery rates using a resilience-over-time score

The generalised DID and event study estimates tell an interesting story of how flood exposure affects
household’s perceptions of resilience over time. Yet, these approaches do not make use of all information
across survey waves. For example, each post-flood score is weighted evenly, even though there are
differences between the time taken to collect each wave (see Figure 12 for average dates of wave
completion). It is also difficult to compare associations with a range of time invariant factors — such as
wealth and education. To shed further light on how flooding affects resilience over time we examine our
survey data using a second method: an Area Under the Curve (AUC) approach.

AUC approaches are commonly used in comparing temporal changes in aggregate outcomes, such as
subjective wellbeing (Kimball et al. 2015), stress-level monitoring (Eckhardt 2001) as well as various other
health-related outcomes (Mohiyeddini el atl. 2015; Pruessner er al. 2003). More recently, they have been
used to analyse resilience and recovery rates for hard infrastructure and ecological systems in the aftermath
of disasters (Todman et al. 2016; Zobel 2014). Here, we borrow from these approaches and extend their
application to examine social systems through tracking household-level outcomes.

Specifically, we calculate the total AUC for resilience scores of each individual across all waves of the panel.
As shown in the stylised example in Figure 13d, this constitutes the shaded area under the resilience curve.
Here, the AUC, Resilienceovertimey,, can be expressed as the integral of the resilience curve
Resiliencey, (t) between baseline (t=0) and the remaining seven waves of the mobile phone survey.

Resilienceovertimey, = f7=0 Resiliencey, (t)dt
3)

In essence, we take Resilienceovertimey, (herein referred to as a ‘resilience-over-time’) to represent
cumulative levels of resilience for households over the course of the survey: a proxy for recovery rates. As
scores are unique to each household, they can be used to compare recovery levels across socio-economic
groups.

For simplicity and ease of interpretation, intervals between each wave are assumed to be linear (and any
missing values interpolated relative to the nearest scores on either side). Households with more than three
missing values across the various waves, as well as those lacking in resilience scores for the baseline and
endline surveys are removed entirely from the sample.

A key advantage of the AUC analysis is that it weights resilience scores according to the length of time taken
for each wave to be completed since the last. In theory, households that are heavily impacted by the flood
events will exhibit sharper and most sustained drops in average resilience scores in the months that precede
reporting. This would in turn be reflected in lower resilience-over-time scores compared with households
indirectly affected by flooding.

To formally examine the impact of the floods, and factors commonly associated with resilience-over-time
scores, we run a series of regressions estimate by OLS. In Equation 4 we present a basic model set-up with
the dependent variable Resilienceovertimey,, as the AUC for the period up to 12 months after the baseline.
This mimics a similar set up used by Kimball et al. (2015) in tracking the impacts of life events on levels of
subjective wellbeing over time.

Here, the impact is a dummy variable, fp,,, for households that self-report as directly impacted by flooding
between the baseline and the first two months of the survey. Controls for socio-economic variables, Sy,
and factors commonly associated with resilience, including risk perception, Pp,, are added. Importantly,
each household’s resilience score during the baseline, Resilienceovertimey, , is added to account for
baseline imbalances in mean scotes as recommended by Manca et al. (2005). Lastly, &, represents a village-
level fixed-effect with the error term captured by epy,.



Resilienceovertimey, = f;Resilienceovertimey, 1 + Bafny + B3Sny + Babny + &, + €ny
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To account for potential differences in the makeup of directly and indirectly affected households, we repeat
the exercise using an inverse probability of treatment weighting (IPTW), as per the DiDs above.

Results of the regression models are shown in Table 4. Differences in resilience-over-time scores between
those directly and indirectly-affected households are statistically significant and consistent across all models,
with directly affected households exhibiting lower overall scores than those indirectly affected.

In terms of associations with wider socio-economic variables, age of the household head has a strong
positive association with resilience-over-time scores for both unweighted and weighted samples. Reasons
for this are likely to do with a lack of economic opportunities available to younger individuals — particularly
in relation to work outside of Hpa An — as well as more established social networks and capital. This is well
reflected in the qualitative interviews, with one interviewee observing that ‘households where members are not old
enongh to stay and work in Thailand are in unstable conditions in the village, they struggle to earn for their family (1ID#18,
Female, Farmer). The number of household occupants is also strongly associated with resilience, with
greater occupancy associated with higher resilience-over-time.

Households that derive a primary livelihood from farming are linked with higher resilience-over-time
(though the effect is inconsistent for the IPTW). Numerous interview responses also reflect this trait, noting
how people withont a farm are unstable, they have difficnlty in living’ 1ID#3, Male, Farmer). Interestingly, while the
household’s poverty index (measured through the POP poverty score) exhibits a positive relationship with
resilience-over-time scores for most models, the strength of associations with education of the household
head is far less pronounced (though positive effects are seen across all models).

When it comes to risk factors, higher perceived flood sensitivity and flood exposure are negatively linked
with resilience (though only the former is statistically significant). Life satisfaction is positively associated
with resilience-over-time, while distance to the nearest road is negative and statistically significant — likely
reflecting wider socio-economic circumstances such as access to markets and ease of movement. Female-
headed households have significantly lower resilience-over-time scores compared to male-headed
households. Lastly, it is curious to note that income diversity is negatively associated with resilience
(households with more sources of income are linked to lower resilience-over-time scores).



Table 4: Factors associated with resilience-over-time for the entire Hpa An sample

AUC for unweighted sample AUC for IPTW sample

O @ ©) “ O ©
B2GRK T8TRE 9.0BkEE 1440k 12,03%0k 10,0605
418) (325 (255 (464  (447)  (3.80)

Dummy for flood impact (0=Indirect; 1=Direct)

Dummy for education of household head (0=None; 0.29 2.31 3.00 4.96*
1=Some schooling) (1.32) (1.88) (3.13) (2.66)
Awe of 0. 24k (), 27H%k 0.18%+k (). 28%%*
ge of respondent 0.03)  (0.04) 0.05)  (0.04)
POP poverty score (high score = higher likelihood of not in 0.13%%* 0.13** 0.14%* 0.08
poverty) (0.05) (0.06) (0.06) (0.06)
1.07#08%  1,19%k 1,69k 1.68%*
Mean number of HH occupants (0.26) (0.46) 0.62) 0.68)
Dummy for farmer as primary source of income 4.66%F 7190k 2.63 3.23%
(1=Farmer) (1.05) (1.37) (1.96) (1.84)
Dummy for remittance as primary source of income -1.13 -1.93 4.00% 3.19
(1=Remittance) (1.68) (2.21) 2.11) (2.02)
_ “4 30k 4,92k S7.09%k  7.86%F
Gender of HH head (1=Female) (1.10) 2.00) 2.84) (3.39)
_ -1.71 -1.18 -1.18 0.88
Respondent gender (1=Female) (1.40) (122) (1.44) (1.90)
Risk perception: dummy for flood sensitivity (0= Not at all -6.85%F* -6.19%*
a problem; 1=Very serious problem) (1.67) (3.10)
Risk perception: dummy for flood exposure (0 = Fewer -1.86 -2.04
than once a year; 1=Once a year or more) (1.22) (2.26)

. . . . L . . . 3,74k 5.05%#*
Life satisfaction (higher score = higher life satisfaction) (1.26) (1.49)
Dummy for more than one source of livelihood (1=More -6.29%F* -7 1208
than one) (1.01) (2.26)

. . 0.19 0.38

y +
Distance to the river (log+1) (1.18) (1.06)

. -7.16%k -8.34kk
Distance to nearest road (log+1) (1.14) (1.83)
Observations 1,072 1,072 1,052 1,072 1,072 1,052
Adjusted R2 0.21 0.23 0.20 0.26 0.28 0.31

28.75 (df 28.51 (df 29.09 (df 39.17 (df 38.54 (df 37.90 (df

Residual Std. Error =1062) =1054) =1035 =1062) =1054) =1028)

Note: The outcome variable in all models consists of the resilience-over-time score (i.e. the area under the curve for the SERS-3.4 module
over the course of the 8 rounds of surveying) weighted using IPTW. All models include controls for baseline resilience scores and 1 illage
Jfaxced effects. Models 1-3 consist of the full Hpa An sample, while Models 4-6 are restricted to housebholds directly affected by flooding
between the baseline and Wave 1 of the survey. 1V alues indicate Beta coefficients with Standard Errors clustered at the village-level using a
wild cluster bootstrap with (1000 replications) shown in parentheses, *p<0.1** p<0.05 ***p<0.01

4.4. Examining the impact of natural hazards on different socio-economic groups

The analysis above helps us in understanding the associations between resilience-over-time and a variety of
socio-economic traits for all households in the Hpa An sample. While these are informative, we are
especially interested in knowing whether exposure to the floods affected socio-economic groups in different
ways. In other words, did particular social groups fare better or worse when directly exposed to flooding
(compared to those indirectly affected)?

To explore this in more detail we augment Equation 4 by adding interactions between flood exposure (f,)
and covariates for both socio-economic status (s,,) and risk perception (py,) as shown below.



Resilienceovertimey, = p,Resilienceovertimen, _1 + Bofuy + BsSno + BiPro
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We carry out the analysis with the partially balanced sample. However, we recognise that drop-out rates for
directly affected households are higher and are unlikely to be non-random. We therefore also run the

analysis with a fully balanced dataset — noting that this further reduces the sample group of directly affected
households (n=46 as opposed to than n=78 in the partial sample).

Table 5 presents results from the interacted variables in both samples. Although the group size of directly
affected households is relatively small in both cases, a number of variables are seen as significantly associated
with resilience-over-time scores when interacted with the flood exposure (fyy).

Table 5: Associations with resilience-over-time scores with interactions between flood exposure
and a range of socio-economic and risk factors

Partially balanced sample Fully balanced sample
Unweighted IPTW Unweighted IPTW
) ® o) @
Dummy for household head education (0=None; 1=Some 0.55 (4.03) 5.49 (5.40) 8.63 (7.60) 7.30 (12.60)

schooling) * Flood exposure (0= Indirect; 1=Direct)
Age of respondent * Exposure to flooding 0.04 (0.24) 0.07 (0.23) 0.35 (0.48) 0.42 (0.51)

POP poverty score (high score = higher likelihood of not in
poverty) * Exposure to flooding

Mean number of HH occupants * Exposure to flooding 1.15 (2.61) 2.29 (2.36) 2.97 (2.72) 2.34 (1.72)

ummy for farmer as primary source of income (1=Farmer
D y for f: ¥ f 1=F *

-0.05 (0.34) 0.002 (0.34) 0.49 (0.39) 0.58 (0.39)

K _ * _ _995
Exposute to flooding 8.99 (8.63) 13.64* (7.45) 1.59 (6.19) 9.25 (7.16)
Dummy for remittance as primary source of income o oo «
(1=Remittance) * Exposute to flooding 5.37%* (2.26) 10.06%** (2.77) 1.95 (4.94) 13.26* (7.18)
Gender of HH head (1=Female) * Exposure to flooding -15.59%* (6.13) -11.45* (6.07) -28.73%%* (9.19) -31.48%** (5.88)
Respondent gender (1=Female) * Exposure to flooding 6.33 (9.45) 6.91 (8.74) 14.82 (9.86) 13.77 (10.00)
Risk perception: dummy for flood sensitivity (1=Very serious « o o
problem) * Exposute to flooding -6.72* (3.83) -12.35%* (5.27) -11.08 (6.86) -27.72%* (12.80)
Risk peiC§pt10n: dummy fo'r flood exposure (1=Once a year or 7,69 (8.16) 112,42 (8.65) 24,0455 (7.08) -17.00 (10.58)
more) * Exposure to flooding
Life satisfaction * Exposure to flooding 1.08 (3.00) 2.77 (3.47) 0.44 (2.93) 3.97 (4.40)
Number of sources of livelihood * Exposure to flooding -8.30%* (4.07) -11.10%* (4.34) 0.69 (5.91) -12.49 (9.42)
Distance to the river (log+1) * Exposure to flooding -0.98 (1.94) 1.33 (2.27) 1.65 (3.55) 0.78 (4.04)
Distance to nearest road (log+1) * Exposure to flooding -4.44 (6.89) -3.37 (6.21) -0.89 (11.04) 0.21 (13.16)
Baseline resilience FE YES YES YES YES
Village-level FE YES YES YES YES
Observations 1,052 1,052 925 925
Adjusted R? 0.24 0.35 0.26 0.37
Residual Std. Error 28.36 (df = 36.90 (df = 1014)  27.95 (df = 887)  35.62 (df = 887)

1014)

Note: The ontcome variable in all models is resilience-over-time scores (i.e. area under the curve for SERS over time). Only results of
interactions between flood exposure and socio-economic risk factors are shown. Values indicate Beta coefficients with Standard Errors
clustered at the village-level using a Wild cluster bootstrap (1000 replications) shown in parentheses. ¥p<0.1** p<0.05 ***5<(.07

Consistent with Table 4, results from the interactions show that differences between male and female-
headed households are even more pronounced for those directly affected by flooding. Effect-sizes are large
and statistically significant across all models (though to differing extents), suggesting that flood exposure
has strong negative impacts on female-headed households. This finding is similarly supported by qualitative
insights from Hpa An, with a number of interviewees noting the challenges faced by female-headed
households — widows in particular — in seeking support from relatives and family support networks:

‘Households that are led by widows face difficulties. Of course, they do. If they ask others for help, no one will come. They
do so only when they are paid. Widows are especially in tronble.” ID#1, Female, Seamstress)



Another distinction can be seen with regards to perceived exposure and sensitivity to flooding. Resilience-
over-time scores for those directly hit by the June floods were significantly lower amongst households that
generally viewed flooding as a serious threat, as well as those frequently affected by seasonal flooding.
However statistical significance is inconsistent between samples and weighting procedures.

We also find that differences in resilience scores for households with more than one source of livelihood
are pronounced for those directly-affected by flooding — similar to results in Table 4. However, the strength
of associations (and sign) are inconsistent, with no statistical significance found in the balanced sample.
Lastly, households that receive remittance payments during heavy flood exposure fare better than those
without (though, again, the association is less pronounced for the fully balanced sample).

5. ROBUSTNESS CHECKS AND OTHER TESTS OF VALIDITY

As with any large quantitative analysis, our results come with caveats and assumptions. As such, we run a
series of robustness checks to test the impact of different specifications on the paper’s main findings. In
Annex Section 2 we examine a range of potential confounders, including: differences between variants of
the SERS module (both in terms of composition of resilience capacities and weighting); mode effects
(differences between face-to-face and phone surveys); acquiescence bias; non-response; comparisons with
an objective measure of flood impact (using monthly income); and controls for the timing of household-
level interviews. Though small differences are apparent throughout, all alternative specifications are largely
consistent and supportive of the main findings.

6. DISCUSSION

The Hpa An mobile phone panel survey yields a wealth of information on how resilience is affected in the
aftermath of natural hazards. To make sense of the many tests and results presented above we re-focus our
discussion on the original research questions.

6.1. Do self-evaluated levels of resilience fluctuate on intra-annual time-scales?

Of the three research questions, this is perhaps the easiest to answer. Results from the Hpa An survey
clearly show how perceived resilience scores fluctuate over the one-year period of study. The extent of this
change is visually apparent in Figures 12a and Annex Figure 4. From a high-point in Wave 1 to a low in
Wave 4 (three months post floods), mean resilience scores in Hpa An drop by 34% between the two periods
before rebounding at Wave 7.

These findings have notable implications for resilience policy and programming. For one, efforts to monitor
and evaluate resilience-building interventions should be conscious of the perils of relying on one-off
surveys. If resilience can fluctuate sharply from one month to the next, then evaluators must be careful in
deciding time periods for comparison. The issue is perhaps of greater relevance to non-disaster related
contexts, where levels of household resilience are often assumed to be constant in the absence of a shock.
One way to help address this would be to encourage more widespread use of panel surveys — collecting data
over multiple timescales before, during and after an intervention. Another is to more carefully design studies
when inferring causality. This is particularly important when it comes to choosing control groups and
ensuring that the time periods of data collection are commensurate (e.g. in large household surveys it is
typical to measure different groups one after the other, often with a notable time gap between data collection
rounds).

Admittedly, the findings apply specifically to resilience as measured subjectively (with all the caveats that
come with it). However, the rapid changes in perceived resilience for Hpa An point to an inherent weakness
in traditional objective approaches. These often rely on long lists of socio-economic indicators and
household assets — things that are easier to see and measure. They also frequently rely on immutable
indicators (i.e. those that change slowly over time), such as household assets or livelihood activities. Yet,
while this survey suggests that a household’s resilience-capacities can fluctuate rapidly in the face of shocks,
many traditional indicators are unlikely to change in the shorter-term (as is the case for the income
comparison in Annex Section 2). This can paint an inaccurate picture of a household’s immediate resilience



status. Ways to better accounting for this should be urgently sought — perhaps through improved integration
of objective and subjective approaches, or more widespread of use of non-immutable indicators.

6.2. Do natural hazards impact on perceived resilience over time?

Households’ perceived resilience in Hpa An clearly fluctuates over time. Yet, can we infer possible causes
for this change? This is a harder question to answer. Given the drop in resilience scores immediately after
the flood events, it seems intuitive that exposure to floods could be driving some (if not most) of this. The
conclusion is further supported both by the DiD analyses as well as the AUC calculations for resilience-
over-time (Table 4). Each suggests that the resilience of directly affected households fared significantly
worse in the aftermath of the floods when compared with indirectly affected households.

Yet, a number of other intriguing insights remain. For one, why do resilience scores drop dramatically for
both directly and indirectly affected households after the flood events? One reason for this might be that
the floods impacted on community assets and infrastructure — like roads or access to local markets. Insights
from the qualitative interviews support this claim, with reports of widespread localised impacts. Thus, even
though households may not have been physically impacted by the flooding, these indirect impacts may have
caused households to report lower resilience scores. It may also reflect that the fact that the survey is a
census, with households closely networked; indirectly-affected households may have offered support
(financial or otherwise) to directly-affected households nearby - whether family, neighbours or friends.

More importantly, could other factors such as response biases or seasonal fluctuations be partly driving
changes in resilience scores (together with, or instead of the floods)? While we try to account for the former
by randomising questions and ensuring that priming effects are kept to a minimum, we can do little to
account for the influence of the latter in the absence of multi-year data. However, so long as seasonal
fluctuations and wider shocks are systematic across the population, they should not change the fact that
significant differences are observed between directly and indirectly affected groups (as measured by the
DiD estimates). Indeed, that the pattern of gaps is consistent with expectations (starting off large and
appearing to converge slowly over time) provides some reassurance of the role of flooding in influencing
resilience scores. Moreover, when we exclude households that report other socio-economic shocks during
the course of the survey, we see few differences — further discounting the role of wider shocks as playing a
large role.

Perhaps the most interesting finding from the study is insight into the length of post-flood impacts. Not
only do we see scores fall immediately after the floods, we witness a large up-tick in levels of resilience
roughly five months after the baseline surveys (Wave 5). A similar pattern is seen when comparing the
differences between directly and indirectly affected households over time (though slight differences in
timing for weighted and unweighted samples). Insights like these can prove invaluable guidance for
development and humanitarian actors in understanding the extent and nature of recovery on the ground,
as well the length of time that households may be susceptible to the impacts of follow-on shocks.

Lastly, we look at whether there are differences in the extent to which the three resilience-related capacities
used in devising the SERS module influence post-flooding outcomes. To examine this, we re-run the main
difference-in-difference setup (as per Equation 1) replacing the SERS outcome variable with each of the
three capacities included in the 3A framework for resilience (Bahadur et al. 2015): anticipatory capacity;
absorptive capacity; and adaptive capacity (see Annex Table 1 for wording). Results are shown in Annex
Table 10 (models 1-6), revealing that scores for each of the resilience-related capacities drop for households
directly affected by the floods (when compared with those only indirectly affected).

Differences are statistically significant for all models (except for anticipatory capacity in the IPTW weighted
sample). These findings provide interesting conceptual insights into the extent to which difference
components of resilience change both over time and in response to a natural hazard. More specifically, they
suggest that each of the three capacities used in the 3A variant acts (relatively) uniformly in influencing
resilience-over-time in Hpa An. For comparison, we carry out additional DiD analyses (Annex Table 10,
models 7-8) using transformative capacity as the outcome variable - noting its use in a number of other
resilience frameworks (including Béné et al. 2014 and Pelling 2010). The effect of direct flood exposure is



similarly negative for transformation, though not shown to be statistically significant. However, when we
re-run the main DiD with SERS scores calculated using the AAT variant (made up of absorptive, adaptive
and transformative capacities) in Annex Table 11, we find similar negative and significant outcomes —
significance drops somewhat for the IPTW sample.

Together with findings in Annex Table 4, these results suggest that while individual capacities may differ
somewhat (particularly in comparing scores over time), alternative resilience frameworks appear to produce
similar outcomes (whether the 3As or the AAT variants). Indeed, this matches findings from Jones and
D’Errico (2019) that show how different variants of the SERS module produce similar resilience outcomes
in a cross-sectional survey in Northern Uganda. The reduced effect size and lack of significance for the
transformation DiD (Annex Table 10, models 7-8) is especially interesting, and may reflect the fact that
households’ ability to transform relates more strongly to underlying issues of power and agency (Carr 2019).
These are factors that are undoubtedly entrenched, and unlikely to be altered by exposure to seasonal
flooding. We hope that further research, through both quantitative and qualitative means, can be used to
shed light on these issues going forward. This includes better targeting of subjective questions to reflect
issues of power as it relates to transformation (and resilience more generally).

6.2.1. Does exposure to subsequent shocks affect perceived resilience scores?

The SERS module is meant to measure the ability of a household, at any given moment in time, to deal
with a range of (hypothetical) future threats. Accordingly, it is not necessarily a measure of the length of
time it takes for households in Hpa An to bounce back from the initial period of flooding (though it may
be seen as a proxy for this). Rather, SERS measures the extent that households are able to deal with
subsequent threats in the aftermath of the floods — whether in the form of further flooding or wider socio-
economic shocks. As such, we might expect that any follow-on shocks experienced by households are likely
to exhibit further negative impacts on SERS scores. This is especially the case for those directly affected by
the initial floods. Testing this is inherently difficult, particularly considering the small sample size of
households directly affected by initial flooding.

Despite this, we can explore parts of this hypothesis by making use of follow-up questions asked during the
Hpa An survey. For example, after the main period of flooding, all households were asked whether they
had been affected by any socio-economic or environmental shocks in the period since the last survey Wave
(see Annex Table 3 for wording). While exposure to follow-on shocks was relatively uncommon
(comprising less than a quarter of households over the course of the entire panel), interesting insights can
be learned by comparing the impacts of subsequent shocks on resilience scores between households directly
and indirectly affected by the initial floods.

To do so, we carry out two additional tests for heterogeneous effects. The first is to augment Equation 4
with an interaction between flood exposure and a dummy for whether the household was affected by a
shock in the subsequent waves (similar to the setup in Equation 5). This measures differences in the
resilience-over-time score (i.e. the area under the curve for resilience scores) between those affected by
subsequent shocks for households directly affected by flooding (compared to those indirectly affected). A
second approach is to run a difference-in-difference-in-differences setup (akin to triple-differencing). This
essentially augments Equation 1 by adding a further interaction to the original difference-in-difference
estimate (see Annex Section 3 for equations and full results). Both are similatly interpretable, with the
former comparing resilience-over-time scores, and the latter comparing differences in SERS scores directly.

Results from both tests in Annex Section 3 show that subsequent shocks are negatively associated with
resilience (as seen by the negative coefficients in Annex Tables 11 and 12). The association is statistically
significant (at p<0.05) for the first approach, though not for the triple differencing setup. While
inconsistencies in the strength of the associations between the two tests suggest that care should be taken
in deriving firm conclusions, the negative effects across all models provide some reassurance that SERS
may be: i) responsive to successive external threats (and not just a measure of how long it takes to bounce
back from a single event); ii) and responsive to different types of threats. However, the group affected by
both June flooding as well as any subsequent shocks totals only 17 in number. Follow-up work is
therefore needed to firmly establish the nature and strength of these underlying assumptions.



6.3. Which social groups fare better or worse in the aftermath of a natural hazard?

There are two factors to consider when examining which groups fared better or worse in the aftermath of
the Hpa An floods. Firstly, we can look at the fate of all households in the sample - combining both directly
and indirectly affected households. Here, Table 4 points to significant associations between resilience-over-
time and: age (older respondents fare better); levels of poverty (poorer households are less resilient); gender
of household head (female heads are worse off); higher life satisfaction (happy respondents are more
resilient over time); livelihood type (farmers are better off compared with non-farmers); livelihood diversity
(those with more sources of income fare comparatively worse); flood sensitivity (those that view flooding
as a serious problem are negatively affected); and distance to nearest road (those further away from a road
are worse off).

One interesting finding is that the number of household occupants has a significant positive association
with resilience-over-time scores (though with a modest effect size). This link is not well explored within the
resilience literature, and may reflect the fact that larger households are likely to have more developed social
networks and higher human capital available to them. It may also suggest that development actors consider
targeting smaller (and likely younger) households in seeking to prioritise vulnerable groups.

It is also interesting to see that education exhibits a weak statistical relationship with resilience-over-time.
Moreover, while poverty levels are seen as significant across all unweighted samples, associations in the
IPTW sample are inconsistent. These findings conflict somewhat with traditional measurement frameworks
that typically assume that higher education and wealth are some of the strongest predictors of resilience
(D’Errico and Di Giuseppe 2018). Yet, the survey findings are consistent with previous subjective
assessments in other contexts, such as Béné et al (2016) that carry a multi-country comparison and Jones
and Samman (2017) that conduct a nationally representative survey of Tanzania. It is also worth noting that
education and poverty likelihood are strongly associated with baseline resilience scores (see Annex Table
2), suggesting that any lack of association may be in relation to flood impacts rather than stabilised resilience
levels.

A second way to look at the results is to focus specifically on the plight of households directly affected by
the floods (see Table 5). In many ways this question has more policy relevance: these are households that
face the worst consequences. Any differences are therefore more likely to be caused by the floods
themselves, rather than being drowned out by the wider sample. Here, two points are noteworthy. First is
that female-headed houscholds fare considerably worse than male-headed households (with effect sizes
large compared with other household traits). Together with the qualitative data collected, it points to
challenges that female-headed households face in gaining access to valuable support networks, capitalising
on livelithood opportunities and having a voice in community-level recovery efforts (Islam, 2017).

A second interesting observation is that livelihood diversity (defined as the number of sources of income)
is negatively associated with resilience-over-time. The link is statistically significant for both the full sample
(Table 4) and the interaction with flood exposure for the partially balanced sample (Models 1-2 of Table 5).
In other words, households with a single source of income appear to be better off than those with multiple
sources (when controlling for a range of other factors). These findings conflict somewhat with traditional
assumptions of resilience and disaster recovery (Adger et al. 2005b; Allison and Ellis 2001). The underlying
reasons for this are unclear, though may suggest that promotion of a variety of livelihoods may be an
inefficient means of supporting households in recovering from floods (at least in the context of Hpa An).
It also adds weight to the conclusions of Liao et al. (2015) that challenge the orthodox of livelihood
diversification as applied in the context of Chinese pastoral households. However, we are careful to note
that the association between the livelihood diversity and resilience-over-time when interacted with flood
exposure is not significant in the fully balanced panel (as per Equation 5 and Table 5). Further evidence —
particularly drawing on qualitative insights — is needed in drawing firm policy conclusions.

Lastly, we highlight the importance of strong associations between measures of risk perception and
resilience-over-time (particularly when interacted with flood exposure). In essence, this implies that
households have some grasp of the factors contributing to their own resilience. More importantly, given
that risk perception was measured during the baseline survey (prior to the floods), it may suggest that



perceptions of risk (particularly flood sensitivity) have some predictive power in both determining levels of
resilience-over-time as well as distinguishing between households likely to be hardest hit by natural hazards.
While this has considerable implications for measurement efforts, more can be done to further explore
these links, particularly with regards to causal drivers — noting that risk perception is likely to play a role in
people’s evaluations of resilience (Béné et al. 2019).

6.4. Challenges and ways forward for resilience measurement

By combining subjective evaluations with mobile phone surveys, insights from the Hpa An panel survey
are an important first step in better understanding (and quantifying) how resilience changes over time. Our
tindings confirm the well-documented influence a range of drivers for resilience and post-disaster recovery.
They also challenge a number of long-held assumptions. To get a better sense of the implications of these
tindings, as well as whether they apply in contexts outside of Hpa An, a number of research gaps and
avenues for further exploration need addressing.

For one, further testing of the validity of subjective assessments and comparisons with the wide range of
existing objective approaches is crucial (building on eatlier work by Clare et al. 2018 and Jones and D’Errico
2019). In particular, a better understanding of the impact of various cognitive biases on subjective responses
will aid in drawing firmer conclusions on the outcomes of perception-based surveys such as this. This
includes further exploration of the potential role of psychological adaptation in explaining recovery of SERS
scores — similar to the effects experienced in measures of subjective wellbeing (Dolan 2008). In addition,
more consistent collection of longer-term panel datasets (from a variety of different contexts) will be crucial
in helping to disentangle causal effects, and discounting any confounding influences on resilience outcomes
(such as seasonal or mode effects).

With all of this in mind, our results point to the considerable potential for subjective and mobile-phone
survey tools. The simplicity of their use, cost-efficiency and near-real-time nature of remote data collection
may provide a valuable complement to existing approaches for monitoring and evaluation. If household
resilience does fluctuate over shorter timescales (as suggested by the Hpa An survey) then development and
humanitarian actors should take note in accounting for this in their vulnerability assessments, project
designs and post-intervention evaluations. This is particularly relevant in the aftermath of a natural hazard
where resilience-capacities are likely to change rapidly. Greater innovation in designing and applying
resilience measurement tools that can capture momentary, transient and longer-terms changes is needed.
Doing so may be key to ensuring more effective resilience-building interventions on the ground.
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Annexes

Annex Table 1: List of resilience-related capacity questions used in the numerous variants of the
Subjective self-Evaluated Resilience Score

Preamble: T am going to read out a series of statements. Please tell me the extent to which you agree or
disagree with them.” [Read out each statement and ask] “‘Would you say that you strongly agree, agree,
disagree, strongly disagree or neither agree nor disagree that.’

Resilience-related capacity

Survey question

Absorptive capacity
Adaptive capacity
Anticipatory capacity

Transformative capacity

Financial capital

Social capital

Political capital

Learning

Eatly warning

Your household can bounce back from any challenge that life throws at
it

If threats to your household became more frequent and intense, you
would still find a way to get by

Your household is fully prepared for any future disasters that may
occur in your area

During times of hardship, your household can change its primary
income or source of livelihood if needed

During times of hardship, your household can access the financial
support you need

Your household can rely on the support of family and friends when
you need help

Your household can rely on support from politicians and government
when you need help

Your household has learned important lessons from past hardships that
will help you better prepare for future threats

Your household receives useful information warning you about future
risks in advance

Notes: The full SERS muodel uses all nine resilience-capacity questions, named the 9-C model. For the purposes of this study,
we use the shortened 3A variant of the SERS model with nses Absorptive, Adaptive and Anticipatory capacities. Jones and
D’Errico (2019) also use another variant, named AAT, comprising of Adaptive, Absorptive and Transformative capacities.



Annex Figure 1: Key socio-economic characteristics of survey respondents
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Annex Figure 2: Risk perception: self-reported sensitivity and exposure to cyclones, droughts and
floods in Hpa An
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Note: For sensitivity respondents were asked, ‘Please rate the following extreme weather events in accordance with how serious a problem they bave been to

your household’s ability to survive and thrive in the past 5 years’; For exposure respondents were asked, ‘On average, how often would you say your
household is affected by the following extreme weather events?’



Annex Section 1

What factors are associated resilience during the baseline survey?

One important aspect of the survey is understanding baseline levels of resilience. As highlighted in Table 2 (main
text) mean subjectively-evaluated resilience score across all households is 0.54 (SD=0.18). Yet, this is somewhat
uninformative without comparing across households. To do so we regress baseline SERS scotes, Resiliencey,,
against a number of key social-economic and demographic variables, Socioy,. In addition, Capacityy,, is a list of
factors commonly associated with household resilience and &p,are village-level fixed effects.

Resilencey,, = By + BiSocion,+ BrCapacityy, + &, + ep, 1)

Results from the model show that baseline resilience scores are positively associated with a number of
socioeconomic traits, including education of the household head, lower likelihood of poverty, gender of
household head and number of household occupants. Age of household head appears to be negatively associated
with resilience, as does the gender of respondent. As respondent gender (1=Female) is randomised this
potentially signals a difference in the way that males and females perceive their respective households — though
note the low-level of statistical significance (p<<0.1). With regards to factors commonly associated with resilience,
higher life satisfaction is strongly significant (those with higher life satisfaction have higher resilience scores).
Lastly, households that ate further away from the main river (the Thanlwin) also appear to have lower resilience
scores when controlling for all other factors (note here that the SERS resilience module is not specific to flood
resilience).



Annex Table 2: Factors associated with subjectively-evaluated resilience for the Hpa-An baseline
survey

o @
Dummy for education of household head (0=None; 1=Some schooling) 0.05%F* (0.01) 0.05%F* (0.01)
Age of respondent -0.001#** (0.0004) -0.001*** (0.0004)
POP poverty score (high score = higher likelihood of not in poverty) 0.002*%** (0.001) 0.002*%** (0.001)
Mean number of HH occupants 0.01%F* (0.002) 0.01+F* (0.002)
Dummy for farmer as primary source of income (1=Farmer) -0.03** (0.01) -0.03* (0.01)
Dummy for remittance as primary source of income (1=Remittance) 0.02 (0.01) 0.02** (0.01)
Gender of HH head (1=Female) 0.03*F* (0.01) 0.03** (0.01)
Respondent gender (1=Female) -0.02* (0.01) -0.02%* (0.01)
Risk perception: dummy for flood sensitivity (1=Very serious problem) 0.01 (0.01)
Risk perception: dummy for flood exposure (1=Once a year or more) 0.001 (0.02)
Life satisfaction 0.03*F* (0.01)
Number of soutces of livelihood 0.001 (0.01)
Distance to the river (log+1) -0.02* (0.01)
Distance to neatest road (log+1) -0.01 (0.01)
Observations 1,072 1,052
Adjusted R2 0.17 0.19
Residual Std. Error 0.16 (df = 1056) 0.16 (df = 1030)

Note: All models include Village fixed effects. 1 alues indicate Beta coefficients with Standard Errors clustered at the village-level using a Wild cluster bootstrap with 1000
replications and shown in parentheses, *p<0.1 **p<0.05 ***p<0.01

For details on question wording see Annex Table 3



Annex Table 3: Questions and response items for variables of interest in the Hpa An survey

Variable

Question

Response items

Notes

Flood impact

Risk perception: flood sensitivity

Risk perception: flood exposure

Life satisfaction

Self-assessment of local environmental change

Since we last called you on [DATE], has
your household been affected by any
significant shocks or events that have
had a large negative effect on your
household’s way of life?

Would you say that flooding poses an
extremely serious problem, a very
serious problem, a serious problem, a
minor problem or no problem at all?

On average, how often would you say
your household is affected by flooding?

All things considered, how satisfied are
you with your life as a whole these days?

Has the health of the
environment around you changed in
recent years?

natural

Yes
No
Don’t know

An extremely serious problem
A very serious problem

A setious problem

A minor problem

No problem at all

Refused to Answer

Don’t know

Multiple times in a year
Roughly once a year
Roughly once every couple of
years

Roughly once every five years
Rarely, if ever

Refused to Answer

Don’t know

Very dissatisfied with life
Dissatisfied with life
Neither satisfied nor
dissatisfied

Satisfied with life

Very satisfied with life
Refused to Answer

Don’t know

It is improving considerably
It is improving slightly

It is not changing

It is worsening slightly

It is worsening considerably

Respondents that answer as affected are asked a follow up question: ‘What is the
primary cause of this shock or event?” (with Flood one of the options available).
Responses are then collapsed into binary variables, including: Floods,
Landslides, Irregular/Unseasonal rain, Strong wind/tornado, Disease destroying
crop, Sudden loss livestock, Social unrest, Fall in price of a good that the HH
sells, Increase in price of food or other essential item, Medical emergency,
Serious accident at work or home, Death of the income generator, Sudden loss
of productive assets, Loss of job.

Premable: “I would like to ask you about what would happen if a flood were to
affect your household in the near future. By severe flood I mean one that is
likely to negatively affect your household, or harm your dwelling, fields, or
resources. Please rate how setrious a problem flooding has been to your
houschold’s ability to survive and thrive in the past 5 years.” Question asked
during the baseline of the survey. Responses then collapsed into binary variable
(extremely serious/very serious/serious=serious problem; minor/no
problem=not serious problem)

Question asked during the baseline of the survey. Category collapsed into binary
variable (multiple times/roughly one a year=once a year or more; every
couple/once every five/rarely=less than once a year)

Question asked during the baseline of the survey. Treated as a cardinal variable.

Question asked during Wave 6 of the survey. Treated as a cardinal variable and
time invariant.




Annex Table 3 continued: Questions and response items for variables of interest in the Hpa An survey

Variable

Question

Response items

Notes

Coping mechanisms

Primary livelihood

Access to climate information

during last flood

Early warning information

‘What coping mechanisms has your
houschold employed in responding to
the

shock event since its occurrence? Please
list up to three’

‘What is main source of income for this
household?’

Do you have access to weather forecasts
and climate information?

Did you receive information warning your
household about the flood in advance?

e

wu

N

o 0~

Yes
No

Household members migrated

Engaged in spiritual efforts - prayer, sacrifices, divine consultations
Obtained credit

Ask for remittances from those outside the household

Received help from NGO /religious institution

Received help from government

Sought new forms of livelihood or work

Rely on own saving

Changed eating patterns (relied on less preferred food): options, reduced
proportion or number of meals/day, or household members skipped days of

eating, etc)"

. Received help from relatives/friends

. Sent children to live elsewhere

. Reduced expenditures on household good
. Took child out of school

. Sold agricultural assets or goods

. Did not do anything

From agriculture

from livestock breeding/
hunting and forestry/ fishery
from selling food, groceries
and other goods

Income from services

Salary

Regular daily wages / piece
rates earning

. Casual laborer
. Remittance - local
. Remittance - foreign

. Other (specify)

Question only asked to households that self-
report as affected by a disaster. Responses are
post-coded afterward. Responses are then
formed into a binary variables, with a primary
coping mechanism constituting a response to
any recovery mechanism (each households was
able to choose up to three).

Question asked during the baseline survey.
Responses to formed into binary variables used
in the regression analyses

Question asked to all respondents in Wave 5 of
the survey, irrespective of flooding

Question only asked to respondents that self-
reported as directly affected by a flood since the
last round of the survey, and asked in relation
to the flood event in question




Annex Section 2:

A key decision made early on in the analysis is use of a reduced form of the SERS model; we opt for a
version with three resilience-capacity questions rather than the full model with nine questions. To test the
implications of this decision we run side-by-side analyses of different variants of the SERS module for the
baseline survey in Annex Table 4 (set-ups are similar to Annex Table 2). Model 1) shows results from the
3A variant of the SERS module used in the main analysis, Models 2) and 3) use the 9C (all 9 questions)
and AAT (including questions related to adaptive, anticipatory and transformative capacities) variants
respectively®. Though statistical significance varies across some variables, signs and magnitudes of effect
sizes are broadly similar across all three, implying that results are somewhat consistent across different
characterisations of resilience. We also re-rerun the analysis with a variant of the SERS that weights based
on a principal component analysis (rather than the standard methods of equal mean weighting) and see
no large qualitative differences in key trends.

Turning to the validity of resilience-over-time scores, a number of selection choices should be considered.
The first is whether to include data from the face-to-face survey alongside the wider phone panel. This is
particularly important given well-documented differences in subjective scores between the two modes of
administration (Dolan & Kavetsos 2016). The second, is how to deal with missing values when calculating
a resilience-over-time score (as any such values need to be interpolated). In order to test these formally
we replicate Equation 4 with three different specifications.

In Annex Table 5, Model 1) is the same set-up as in the main analysis and removes only households that
have three or more missing resilience scores, or a missing value for either the starting (baseline) or finishing
waves (wave 7). Model 2) excludes any household that has a missing value for a resilience score across any
wave of the survey. While Model 3) excludes resilience scores from the face-to-face survey and starts
calculating the area under the curve as of the first phone survey. Given that Model 3) includes one fewer
survey than the rest, we calculate the resilience-over-time score as the area under the curve for 6
subsequent waves (rather than 7 in the main analysis). As is clear from Annex Table 5, though small
differences exist, results appear to be similar in sign and significance across most variables of interest for
the three specifications.

In rare cases, the original respondent was unable to pick up the phone and another member of the
household carried out the survey in their place. Given the potential for confounding individual influences
we rerun the main difference in difference analyses with a subset of the dataset that excludes values
obtained from non-original respondents (Annex Table 6). Again, we see few differences in the main
outcome.

Another crucial aspect to consider is how many time periods to include in calculating the resilience-over-
time scores. While use of data from a larger number of waves provides more nuanced information on a
household’s recovery, it also risks being influenced by other external factors (like wider socio-economic
of environmental threats) that make it difficult to make comparisons across groups. The choice of all 7
waves of phone survey data in calculating the AUC is borne of the desire to use all information available.
However, in Annex Table 7 we compare multiple resilience-over-time scores, starting with the use of just
three waves and adding an additional wave each time, up to a total of 7 waves. We also plot distributions
of resilience scores in Annex Figure 3. While small differences are apparent, signs and levels of significance
are largely consistent.

We recognise that assessments of perceived levels of resilience are subjective in nature. Unfortunately,
limitations in mobile surveys (typically restricted to 10-12 mins in duration) do not lend themselves to

8 The AAT variant is meant to mimic the framework proposed by Béné et al. 2012. For full details of the questions and
methods used in the variants see Jones (2017)



applying ‘objective’ measures of resilience such as the RIMA toolkit (FAO 2016%). However, we can make
a useful comparison with changes in self-reported levels of monthly income — often considered a proxy
for a household’s economic resilience (Sturgess 2016) — collected during two waves of the survey (one
prior to the floods and the other a number of months after). In Annex Table 8 we compare self-reported
incomes between the baseline and Wave 5 of the survey using a difference-in-differences set-up similar to
the main analysis. In doing so we see no statistically significant differences between direct and indirectly
affected households. While this may point to differences in definitional outcomes of resilience, we refrain
from drawing firm conclusions as it is far from a like-for-like comparison. Well-documented weaknesses
in self-reported income measures (Fukuoka, et. al 2007) also mean that consumption-based measures
(such as the POP poverty score used in the main analysis) are far preferred. Still, we believe that dedicated
future analyses comparing subjective resilience and other proxies for resilience will have considerable

merit.

Lastly, subjective assessments may be prone to different societal and environmental cues (Metcalfe et al.
2016). As such, we re-run the main difference-in-differences set-up for resilience scores with the inclusion
of controls for day-of-the-week of the interview, time-of-the-day of the interview and weather on the day
of interview (including average temperature, precipitation, dew point). Reassuringly, Table 9 show few
differences in the paper’s main outcome.

? For more on direction comparisons of objective and subjectively-evaluated resilience see Jones and D’Errico (2019).



Annex Table 4: Comparison of associations with resilience using different versions of the SERS

module

SERS-3A SERS-9C SERS-AAT
@ &) ©)
Dummy for education of household head (0=None; 1=Some
5 0.05%** (0.01) 0.14%%* (0.04) 0.21%%* (0.07)

schooling)
Age of respondent
POP poverty score (high score = higher likelihood of not in

-0.001** (0.0003) -0.003*%* (0.001)  -0.01*%** (0.002)

0.002%* (0.0005)  0.003** (0.001)  0.002 (0.002)

poverty)

Mean number of HH occupants 0.01*+* (0.002) 0.03**+* (0.004) 0.02%* (0.01)
Dummy for farmer as primary source of income (1=Farmer) -0.03* (0.01) -0.08** (0.04) -0.11%%% (0.04)
Dummy for remittance as primary source of income (1=Remittance) 0.02*+ (0.01) 0.07*%* (0.03) 0.07 (0.05)
Gender of HH head (1=Female) 0.02%+* (0.01) 0.08*** (0.03) 0.08* (0.05)
Respondent gender (1=Female) -0.02*%* (0.01) -0.06** (0.03) -0.13%+% (0.05)
Risk perception: dummy for flood sensitivity (1=Very serious

problem) 0.01 (0.01) 0.01 (0.01) -0.01 (0.04)
Risk perception: dummy for flood exposure (1=Once a year or _

mote) 0.001 (0.02) 0.03 (0.05) 0.09 (0.06)
Life satisfaction (higher score=higher life satisfaction 0.03*** (0.01) 0.04*%** (0.01) 0.12%* (0.02)
Number of soutces of livelihood 0.0002 (0.01) -0.002 (0.01) -0.01 (0.02)
Distance to the river (Log+1) -0.02* (0.01) -0.04 (0.03) -0.02 (0.02)
Distance to nearest road (Log+1) -0.01 (0.01) -0.002 (0.01) -0.01 (0.03)
Observations 1,057 1,057 1,057
Adjusted R? 0.18 0.20 0.21
Residual Std. Error (df = 1034) 0.16 0.41 0.69

Note: All models include Village-level fixed effects. Values indicate Beta coefficients with Standard Errors clustered at the village-level nsing a Wild cluster
bootstrap with 200 replications and shown in parentheses, *p<0.1** p<0.05p***p



Annex Table 5: Associations with resilience-over-time for different methods of dealing with missing
values

Fewer than 3 No missing Phone only

.. I'CSPOHS@S across all
mlssmg ICSPOHSCS

waves (phone and

(phone ‘?1 )base]ine) bascline)
@ )

glﬁr:;ﬁzléor education of household head (0=None; 1=Some 0.17 (2.45) 071 (212) 0.65 (2.18)
Age of respondent 0.22%F* (0.04) 0.22%%% (0.04) 0.19%%* (0.03)
g((;zrlf;;verty score (high score = higher likelihood of not in 0.09 (0.06) 0.12 (0.05) 0.11% (0.06)
Mean number of HH occupants 0.82 (0.58) 1.09* (0.61) 0.87 (0.60)
Dummy for farmer as primary source of income (1=Farmer) 5.53%** (1.96) 4.83%F (1.94) 5.07%% (1.74)
Biﬁ:ﬁ;&;ﬁ?itmnee as primary source of income 4130 (1.33) -179 (1.11) 20,97 (122)
Gender of HH head (1=Female) -2.87 (2.71) -3.35 (2.84) -2.11 (2.82)
Respondent gender (1=Female) -1.48 (1.27) -0.69 (1.88) -1.39 (1.03)
Ei'ikblpefrrl;eption: dummy for flood sensitivity (1=Very serious 391 (2.49) -4.45% (2.70) 13,63 (2.67)
i:)l;g)erception: dummy for flood exposure (1=Once a year or 0.6 (2.04) L0.43 (2.55) L0091 212)
Life satisfaction 4.01%%* (1.14) 3.84%F*% (1.30) 3.34%8% (1.27)
Number of sources of livelihood -1.39 (0.92) -0.54 (0.99) -1.42 (1.00)
Distance to the river (log+1) -1.52%* (0.67) -0.76 (0.92) -1.61%%* (0.60)
Distance to nearest road (log+1) -5.61%%* (1.42) -4.19%* (1.94) -4.35%** (1.35)
Baseline control YES YES YES
Village fixed effects YES YES YES
Observations 1,040 925 1,009
Adjusted R2 0.24 0.26 0.18
Residual Std. Error 26.25 (df = 1017) 25.83 (df = 902) 24.41 (df = 9806)

Note: To ensure comparability across the models, the AUC resilience-over-time scores are caleulated up to Wave 6 for models 1 and 2 (rather than Wave 7 in the
main analyses) owing to the fact that the phone-only variant in Model 3 has one fewer wave (i.e. no baseline). 1 alues indicate Beta coefficients with Standard Errors
clustered at the village-level using a Wild cluster bootstrap with 1000 replications and shown in parentheses, *p<0.1 **p<0.05 ***p<0.01



Annex Figure 3: Histogram of Resilience-over-time scores for difference variants amongst the entire
Hpa An sample

a) Resilience-over-time (baseline included)

200
150
100

Count

50

0

50 100 150 200 250
Resilience—over—time score

c) Resilience-over-time (baseline & no missing values)
200

150

50 100 150 200 250
Resilience—over—time score

b) Resilience—over-time (only phone waves)
250

200
150
100

50

Count

50 100 150 200
Resilience—over—time score



Annex Table 6: Difference in differences for sample of same respondents only

Unweighted IPTW
f - post (Difference in Differences) -0.09**%* (0.02) -0.07*%* (0.03)
Household fixed effects YES YES
Wave fixed effects YES YES
Observations 7,520 7,520
Adjusted R-Squared 0.31 0.29
Residual Std. Error 0.17 (df = 6572) 0.23 (df = 6572)

Note: 1V alues indicate Beta coefficients with Standard Errors clustered at the village-level using a Wild cluster bootstrap with 200 replications and shown in parentheses,
*$<0.1 **p<0.05 **p<0.01



Annex Table 7: Differences in associations with Resilience-over-time for different end-points of the

AUC

3 waves

4 waves

5 waves

6 waves

7 waves

Dummy for flood impact
(0=Indirect;1=Direct)

Baseline resilience score

Dummy for education of household head
(0=None; 1=Some schooling)

Age of respondent

POP poverty score (high score = higher
likelihood of not in poverty)

Mean number of HH occupants

Dummy for farmer as primary source of
income (1=Farmer)

Dummy for remittance as primary source

-6.58" (1.10)
3443 (3.12)
-1.93* (1.10)
0.13** (0.03)
0.04 (0.04)
048" (0.27)

248" (1.11)

513" (2.87)
4325 (3.29)
-2.20 (1.89)
0.17 (0.03)
0.07 (0.06)
0.65" (0.39)

2,65 (1.60)

-5.35" (2.76)
4835 (3.30)
-0.89 (2.22)
0.18" (0.04)
0.08 (0.05)
0.66 (0.49)

3.76" (1.90)

-6.28" (3.43)
51.73" (4.00)
-1.35 (2.50)
020" (0.04)
0.13™ (0.06)
0.84 (0.58)

492 (1.87)

-7.87" (4.05)
54.10" (4.17)
0.29 (2.76)
0.24™ (0.05)
0.13* (0.05)
1.07° (0.57)

466" (1.81)

of income (1=Remittance) -1.45" (0.51) -1.72 (0.85) -1.06 (1.00) -1.36" (0.72) -1.13 (0.93)
Gender of HH head (1=Female) -2.07" (1.01) -3.65" (1.44) -3.49 (2.18) -3.30 (2.59) -4.30" (2.60)
Respondent gender (1=Female) 0.43 (0.67) 0.25 (0.88) -1.33 (1.17) -1.72 (1.35) -1.71 (1.25)
Baseline resilience FE YES YES YES YES YES
Village-level FE YES YES YES YES YES
Observations 1,004 990 1,065 1,056 1,072
Adjusted R? 0.23 0.22 0.21 0.22 0.23

Residual Std. Error 14.79 (df = 1046) 19.95 (df = 972) 24.17 (df = 1047) 26.41 (df = 1038) 28.51 (df = 1054)

Note: 1V alues indicate Beta coefficients with Standard Errors clustered at the village-level nsing a Wild cluster bootstrap with 1000 replications and shown in parentheses.

Sample sizes differ owing to differences in nsion for missing values in s ¢ waves of the survey. *p<0.1 **p<0.05 ***p<0.01




Annex Figure 4: Densities and proportion of responses across the various waves of the Hpa An
survey
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Note: Density functions are represented with the red line, while proportion of responses are indicated in blue/grey bars. X-axis for all panels feature SERS resilience scores
ranging from 1-5.



Annex Table 8: Difference in differences between incomes in Baseline and Wave 5 outcomes

Log(Income+1)
Unweighted IPTW
@® @

f - post (Difference in Differences) 0.13 (0.09) -0.03 (0.11)
f (1=Directly affected by flooding) -1.04%%% (0.04) -0.96%%* (0.05)
post (1=Periods after flooding) -0.18%%* (0.04) -0.17%%* (0.04)
Household fixed effects YES YES
Wave fixed effects YES YES
Observations 2,187 2,187
Adjusted R? 0.35 0.41
Residual Std. Error (df = 1066) 0.55 0.81

Note: 1V alues indicate Beta coefficients with Robust Standard Errors in parentheses. Results are weighted using IPTW. *p<0.1 *¥p<0.05 ***p<0.01.



Annex Table 9: Difference in differences with inclusion of weather, time of day, and day of week
fixed effects

Unweighted IPTW sample
f - post (Difference in Differences) -0.08*** (0.02) -0.06%%* (0.02)
f (1=Directly affected by flooding) -0.07*** (0.02) -0.10%%* (0.02)

post (1=Periods after flooding) -0.01* (0.01) -0.01 (0.01)
Time of day FE YES YES
Day of week FE YES YES
Weather FE YES YES
Wave FE YES YES
Village controls YES YES
Observations 8,241 8,241
Adjusted R2 0.30 0.30
Residual Std. Error 0.17 0.23

Note: SERS scores are used as the ontcome variable. 1 alues indicate Beta coefficients with Robust Standard Errors in parentheses. Results are weighted using IPTW.
*$<0.1 **p<0.05 **p<0.01.



Annex Table 10: Difference-in-differences for the three resilience-related capacities used in the SERS module

Anticipatory Absorptive Adaptive Transformative
Unweighted IPTW Unweighted IPTW Unweighted IPTW Unweighted IPTW
@ @ ©) @ ® © @ ®

f - post (Difference in Differences) -0.07*%* (0.02) -0.05 (0.03) -0.07%% (0.02)  -0.06%F* (0.02)  -0.09**F (0.03)  -0.08** (0.03) -0.03 (0.04) -0.004 (0.04)
f (1=Directly affected by flooding) -0.15%% (0.02)  -0.16*F* (0.03)  -0.12%%* (0.02)  -0.13*** (0.02)  -0.11%% (0.03)  -0.12%¥* (0.03)  -0.13*** (0.03)  -0.15%*** (0.03)
post (1=Periods after flooding) 0.12%%* (0.01) 0.14%%* (0.02) -0.01 (0.01) -0.02* (0.01) -0.13%%¢ (0.01)  -0.11%% (0.01)  0.06*** (0.01)  0.06*** (0.01)
Household fixed effects YES YES YES YES YES YES YES YES
Wave fixed effects YES YES YES YES YES YES YES YES
Observations 8,667 8,667 8,678 8,678 8,689 8,689 8,674 8,674
Adjusted R? 0.18 0.16 0.26 0.27 0.19 0.19 0.08 0.12
Residual Std. Error 0.25 (df = 7539) 0.35 (df = 7539) 0.23 (df = 7550) 0.31 (df = 7550) 0.26 (df = 7561) 0.36 (df = 7561) 0.25 (df = 7546) 0.35 (df = 7540)

Note: 1V alues indicate Beta coefficients with Robust Standard Errors in parentheses. Results are weighted nsing IPTW. *p<0.1 *p<0.05 ***<0.01.



Annex Table 11: Difference in differences with resilience-scores calculated as a combination of
absorptive, adaptive and transformative capacities

Unweighted IPTW
1) @

f - post (Difference in Differences) -0.06%%* (0.02) -0.04* (0.02)
f (1=Directly affected by flooding) -0.12%%% (0.01) -0.14%% (0.02)
post (1=Periods after flooding) -0.03*%* (0.004) -0.02%F* (0.004)
Household fixed effects YES YES
Wave fixed effects YES YES
Observations 8,066 8,666
Adjusted R2 0.24 0.25
Residual Std. Error (df = 1066) 0.17 0.24

Note: 1V alues indicate Beta coefficients with Robust Standard Errors in parentheses. Results are weighted using IPTW. *p<0.1 *¥p<0.05 ***p<0.01.



Annex Section 3: Testing for the impact of subsequent shocks amongst directly affected
households

In our first setup, we regress resilience-over-time scores (i.e. the area under the curve for resilience scores
across the panel) against the same covariates as those included in Equation 4. In addition, we interact fp,,
(a variable for flood impact) with a dummy variable, dp,,, which indexes for whether the household has
experienced an additional shock in any of the subsequent Waves. To account for non-random rates of drop-
out amongst households affected by subsequent shocks we limit the analysis to the fully balanced dataset.

Resilienceovertimey, = B1fny + B28ny + Bz (fnw " dpnw) +

BaResilienceovertimey,_1+ BsSny + LePhy + &b + €y 5)

The main feature of interest is f3, representing the effect of subsequent shocks on households directly
affected by flooding (compared with those indirectly affected).

Annex Table 12: Interactions between flood exposure and subsequent shock events

Unweighted sample IPTW sample
M) @
. it s (1= *

Flood cxposere (1-Diseet expored) 12897 (657) 9627 (4:81)
Socio-economic and risk perception FE YES YES
Baseline resilience FE YES YES
Village-level FE YES YES
Observations 925 925
Adjusted R? 0.26 0.26
Residual Std. Error 27.91 (df = 899) 37.55 (df = 899)

Note: Resilience-over-time scores (i.e. area under the curve for SERS scores over time) are used as the ontcome variable. Only results of interactions are shown. V alues
indicate Beta coefficients with Standard Errors clustered at the village-level using a Wild cluster bootstrap with 1000 replications and shown in parentheses. *p<0.1
*#p<0.05 ***p<0.01

As part of the second analysis we run a difference-in-difference-in-differences setup (akin to triple-
differencing). This essentially augments Equation 2 by adding a further interaction to the original difference-
in-difference estimate (post; * f). Here dp, is a dummy vatiable for whether the household experienced
an additional shock subsequent to the main period of flooding between the baseline and Wave 1 (1 =
subsequent shock).

Resiliencey, = Bipost, + Bofy + Bzdp + Ba(post, - fr) + Bs(post, - dp) + Be(fr " dn)
+ B;(post, - fr - dp) + Py +epe
0)

In the context of this study, it is §7 that is of primary interest, representing the difference between the DiD
(i.e. seen in Equation 2) for those hit by subsequent shocks compared to those that weren’t. In other words,
it indicates the effect of follow-on shocks on resilience scores for households directly affected by flooding
(when compared to those indirectly affected by flooding).



Annex Table 13: Triple difference estimates on SERS resilience scores

) @
Unweighted sample IPTW sample
post - f - d (Triple differences) -0.05 (0.04) -0.06 (0.04)
Household fixed effects YES YES
Wave fixed effects YES YES
Observations 7,512 7,512
Adjusted R? 0.31 0.29
Residual Std. Error (df = 6563) 0.17 0.23

Note: SERS scores are nsed as the ontcome variable. Only results from the triple interaction are shown. V alues indicate Beta coefficients and Standard Errors clustered at

the village-level using a Wild cluster bootstrap with 200 replications shown in parentheses. Results in Model 2 are weighted using IPTW. *p<0.1 **$<0.05 **p<0.01



